Wednesday, June 2, 2021

Smelting and casting process of titanium and titanium alloy

The frequency range of sound waves that people’s ears can directly receive is usually 20 Hz to 20 kHz, that is, sound (sound) frequency. The frequency lower than 20 Hz is called infrasound, and the frequency higher than 20 kHz is called ultrasonic. Several megahertz ultrasonics are commonly used in industry to detect flaws. Ultrasonic frequency is high, the propagation is strong, it is easy to propagate in the solid, and it is easy to reflect when it encounters the interface formed by two different media, so that it can be used for flaw detection. Usually the ultrasonic probe is in good contact with the surface of the workpiece to be inspected, the probe can effectively transmit ultrasonic waves to the workpiece, and can receive the ultrasonic waves reflected from the (defect) interface, and at the same time convert it into an electrical signal, and then transmit it to the instrument for processing.
According to the speed of ultrasonic propagation in the medium (often called the speed of sound) and the time of propagation, the location of the defect can be known. When the defect is larger, the reflecting surface is larger, and the reflected energy is also greater. Therefore, the size of each defect (equivalent) can be found based on the reflected energy. Commonly used flaw detection waveforms include longitudinal wave, transverse wave, surface wave, etc. The former two are suitable for detecting internal defects, and the latter is suitable for detecting surface defects, but requires high surface conditions.
Titanium Threaded Rod     Gr5 Ti-6Al-4V Titanium Plate     6al4v titanium plate     Titanium Elbow

Sunday, May 30, 2021

Titanium seamless pipe rolling method and precautions

Industrial titanium screws can be welded by contact welding without special preparation. When there is a relatively thick oxide film, it needs to be cleaned mechanically or removed in a 5% hydrofluoric acid solution.
The arc welding of titanium screws is carried out in clean gas, and direct current can be used to achieve better results. At this time, the tungsten electrode is the cathode.
 The direct welding of titanium screws with nickel, Bromo-chromium alloys, and other nickel-containing alloys is not suitable because of the formation of harmful fusible eutectics. Between materials of different properties, molybdenum, tantalum, or niobium spacers with a thickness of fifteen to twenty microns are required. This method can eliminate the contamination of the connection area by other elements because the dissolution process does not require the use of special solder and does not require pre-metallization. It can obtain a high-quality vacuum dense connection, this method is the most promising for titanium screws.
Titanium Clad Copper Rod     Grade 12 Titanium Sheet     ASTM B265 TA6V Titanium Plate     Titanium Flat Washers

Friday, May 28, 2021

Structural changes of titanium rods and titanium alloy rods during hot extrusion

Google launched the Titanium version of Google Glasses (Glass Titanium Collection). The frame of the glasses is made of titanium, which is strong and light. At present, the titanium alloy version of the glasses provides 4 different designs and different colors of frames.
Titanium is stronger and lighter than stainless steel and has better corrosion resistance. It can be described as an attractive metal. But generally speaking, titanium is too expensive for the mass consumer market, so it is more used in high-end or high-performance market areas, such as aerospace, navigation, and sports competitions.
Due to the inertness and durability of titanium, brand-name jewellery made of titanium (especially titanium rings) has become popular and has become an ideal material for watch casings.
In addition, some items that can be sold in high-priced markets are lightweight and corrosion-resistant and are also made of titanium alloys, such as shovel, flashlight, fork, and spoon used in the field.
Titanium processing, cutting, welding, electroplating, etc. all have high requirements on the production process. In particular, the temperature rises quickly during cutting, and it is easy to sinter on the cutting tool. For this reason, titanium generally gives the impression that it is very difficult to process, and many people think it is a material that cannot be freely designed.
Due to its affinity for the human body and its resistance to rust, titanium is highly anticipated in the medical field and wearable terminal field. So, what are the charms of this material in terms of creativity?
Titanium has a unique hue that is rougher than aluminum and brighter than stainless steel.
application
To make such a matte surface requires a special process called "sandblasting". However, other materials are prone to rust or trachoma on the surface after applying this process. Therefore, only extremely corrosion-resistant titanium can achieve such a texture.
In the field of consumer electronics, there are very few applications of titanium. In 2001, Apple used titanium to make laptop casings. But because of the cost, Apple no longer uses titanium in its later products.
ASTM B265 Gr5 Titanium Strip     titanium foil strip     grade 1 titanium foil     Gr23 Ti-6Al-4V ELI Titanium Foil

Tuesday, May 25, 2021

New method and equipment for smelting and casting of titanium and titanium alloy

When the hydrogen content in titanium pipe fittings is too high, the impact toughness and notched tensile strength will be reduced due to brittleness. Therefore, it is generally stipulated that the hydrogen content in titanium pipe fittings should not be higher than 0.015%. In order to reduce hydrogen absorption, fingerprints, wear marks, grease and other residues should be cleaned up before heat treatment. There is no steam in the heat treatment furnace. When the hydrogen content of titanium pipe fittings is higher than the allowable value, vacuum annealing is required.
When the temperature is not higher than 540 degrees, the oxide film of titanium pipe fittings will not become much thicker, but at higher heat treatment temperatures, the oxidation rate will increase, and the internal diffusion layer of the oxide material will become a layer of pollution. The oxygen contamination layer has a high brittleness ratio, which leads to cracks and damage on the surface of the part. Deoxidation pollution layer includes mechanical processing, pickling, chemical polishing and other methods. During the heat treatment, under the premise of protecting the heat treatment, shorten the heating time as much as possible. It can also be carried out in a vacuum furnace or an inert gas furnace. The pollution caused by the heating of titanium pipe fittings in the air furnace should be avoided or reduced.
Features of titanium pipe fittings:
1. Corrosion resistance of titanium pipe fittings. Titanium is a very active metal, which has a very low equilibrium potential and a strong tendency for thermodynamic corrosion in the medium. Titanium has good stability and corrosion resistance in various media such as oxidation, neutrality, and weak reduction.
2. Titanium pipe fittings have good heat resistance. It can be used for a long time at 600 degrees or high temperature.
3. Non-magnetic, non-toxic, titanium alloy pipe fittings are non-magnetic metals that will not be magnetized in a large magnetic field.
4. Low modulus of elasticity, 57% steel.
5. Inhalation performance. Titanium pipe fittings are an active metal, which can react with a variety of elements and compounds at high temperatures.
6al4v titanium round bar     Titanium Wire For Jewelry     ERTi-1 Pure Titanium Welding Wire     Seamless Titanium Tube Grade 2

Sunday, May 23, 2021

Explosive welding forming and interface microscopic analysis of titanium tube-titanium tube sheet

 For many processing workshops, processing high-strength titanium alloy workpieces is as difficult as climbing a slope. In order to solve this problem, machine tool manufacturers have increased the rigidity of milling machines and lathes, improved the damping performance of the spindle and the size of the machine frame, and improved the performance of the motor; these measures are to be able to provide the required large cutting force while reducing Harmful machine tool vibration to avoid reducing the quality of the workpiece and shortening the service life of the tool. In titanium processing, in order to optimize the tool system and obtain the largest metal removal rate, special attention needs to be paid to the performance of the machine tool that provides cutting force output, the characteristics of the contact part of the cutting edge of the cutting tool and the workpiece, and the connection between the machine tool and the tool Location-spindle coupling device.
If you can use the analogy principle of a variable-speed bicycle when purchasing large-scale special material processing equipment, you can achieve better results. People buy variable-speed bicycles for entertainment or exercise, but when riding, they always use the two or three shifting gears that feel the most comfortable. Tour de France athletes and other well-trained athletes not only pay attention to the various components of the car, but also use the advantages of each component (frame, pedals, transmission, wheels, etc.) to obtain the car whether it is climbing, Or the maximum power output when riding on flat ground.
The main design criteria of the machine tool HPX63 include a large cutting capacity, with a maximum machining diameter of 1050 mm and a workpiece height (Y-axis) of up to 1050 mm. The X-axis travel is 1000 mm, the Z-axis travel is 900 mm, and the pallet size is 630 mm. The speed of the B-axis turntable can reach 12rpm, with high torque and fast acceleration performance. The moving speed is fast, up to 32 m/min, the acceleration/deceleration is 0.5G, and the cutting feed rate is 12 m/min. The machine tool is specially designed for precision machining. The metallurgical process used makes the castings with the greatest rigidity. The axial slide of the spindle box is quenched, ground, and manually scraped. The positioning accuracy and repeat positioning accuracy are 0.001 mm. The spindle device of Mitsui Machine Tool can automatically compensate for temperature changes without requiring warm-up time. This company provides a variety of spindle options to meet the needs of users to choose the direct drive and gear drive, as well as the needs of different torques and speeds.
All in all, the HPX-63 machine tool has good robustness, rigidity, and accuracy. It is very suitable for the processing of titanium, Inconel, tool steel, stainless steel, and aluminum materials. It is suitable for the aerospace industry, energy industry, compressor, Molds, fixtures and tooling equipment, automobile prototype parts manufacturing, and general high-precision machining. In order to optimize the tool system, the spindle coupling device is required to maximize the transmission of machine tool power. Most of the tool products on the market are integral tools, and the spindle clamping force is relatively low. The rigidity of the coupling device is very limited, and the radial fit needs to be kept to a minimum specified value. In order to obtain stable end-face contact performance, a very tight tolerance level is required, so the processing cost is greatly increased.
Gr1 Pure Titanium Bar     Grade 9 Titanium Wire     titanium mig welding wire     Titanium Capillary Tube

Thursday, May 20, 2021

What is the magnetic properties of the titanium tube? what is the purpose?

In titanium alloy plates and titanium plates, the recrystallization process is often accompanied by some other structural changes. For example, in near-a alloys and a+β alloys where the content of β-stabilizing elements is small, the dissolution of phase a and the change of β composition are accompanied by the dissolution of phase a; Or cause the inoculation effect on the subsequent aging. In addition, different types of alloys have different microstructures at room temperature, different alloy phases involved in deformation, and different recrystallization processes and characteristics.
In addition to the recovery and recrystallization process of the cold-worked structure of the titanium alloy plate and the titanium plate when heated, there are also compound solutions and a → β polymorphic transformation. In order to improve the performance of titanium alloys and titanium plates, in addition to necessary alloying, appropriate heat treatment is generally required. The recovery process of titanium alloy and titanium plate is also a process in which most of the second type of internal stress generated during deformation is eliminated through the movement of vacancies and dislocations at a certain temperature. The temperature at which the recovery process occurs is lower than the recrystallization temperature, generally 500 to 650°C. .
The influence of alloying elements on the recrystallization temperature of pure titanium has been described in the previous section. In addition to niobium and cobalt, commonly used alloying elements and impurity elements can increase the recrystallization temperature of titanium. The measurement of recrystallization mainly adopts the method of combining metallographic observation and X-ray diffraction. When recrystallization occurs, fine equiaxed grains appear on the deformed fibrous structure, and at the same time, the diffraction rings on the X-ray back-reflected Laue diagram begin to become unconnected spots. For heat-treatable β alloys, incomplete aging (500°C/4-8 hours, air cooling) can also be used to show the recrystallized structure, and the unrecrystallized grains after incomplete aging will appear dark after corrosion. It has been measured that the starting recrystallization temperature of TA2 pure titanium is about 550°C, TA7 titanium alloy is about 600°C, TC4 titanium alloy is about 700°C, and TB2 alloy is 750°C.
Like other metals, the recrystallization process of titanium alloy plates and titanium plates is also a process of nucleation and growth of crystal grains on the deformed structure. At this time, the lattice type does not change, but there is a change in mechanical properties. This process is affected by the degree of cold deformation, heating temperature and holding time, and can be recrystallized through three-dimensional recrystallization of cold deformation rate, heating temperature and recrystallized grain size.
Gr5 Ti-6Al-4V Titanium Bar     Titanium Flat Wire     ASTM F136 Titanium Medical Wire     titanium exhaust tubing

Tuesday, May 18, 2021

What is the corrosion resistance of titanium? What is the performance in common media?

The density of titanium is 4.5g/cm³, which is 57% of that of steel; titanium is less than twice as heavier as aluminum and three times stronger than aluminum. The specific strength is the ratio of strength to density. When compared with different materials, the specific strength of titanium alloys is almost the largest among the commonly used industrial alloys. The specific strength of titanium alloy is 3.5 times that of stainless steel, 1.3 times that of aluminum alloy, and 1.7 times that of magnesium alloy, so it is an indispensable structural material in the aerospace industry.
Grade 12 Titanium Rod     Gr2 Pure Titanium Wire     titanium square tube     Gr7 Ti-0.2Pd Titanium Pipe

Monday, May 17, 2021

Analysis of Common Faults in Surface Quality of Titanium Alloy Products

In the application of various titanium alloy products, forgings are mostly used in gas turbine compressor discs and medical artificial bones that require high strength, high toughness, and high reliability. Therefore, not only high dimensional accuracy is required for forgings, but also materials with excellent characteristics and high stability are required. For this reason, it is necessary to give full play to the characteristics of titanium alloys in the manufacturing process of titanium forgings to obtain high-quality forgings. Titanium alloy is difficult to forge and is prone to cracks. Therefore, the most important thing in the production of titanium alloy forgings is to properly control the forging temperature and plastic deformation.
Application fields of titanium alloy forgings
1) Aerospace field
50% of the world's titanium materials are used in the aerospace field. 30% of the body of military aircraft uses titanium alloy, and the amount of titanium in civil aircraft is gradually increasing. According to reports, the amount of titanium used by Boeing 787 aircraft has reached more than 15%. The representative of titanium alloy for body is Ti-6Al-4V alloy, which has the highest reliability. The near β-type high-strength and high-toughness titanium alloy Ti-10V-2Fe-3Al has been used in the landing gear components of Boeing 777 aircraft, and the A380 has been discussing the use of Ti-10V-2Fe-3Al alloy large forgings as the transmission device of the main landing gear.
If it can be practical, this will be the largest titanium forging with a length of 7m. In aircraft engines, titanium alloy is also an indispensable material, mainly used for fan and compressor parts whose temperature is below 853K. Typical parts used are fan blades, casings, discs, compressor blades, discs, stub shafts, casings, etc. In the aerospace field, titanium alloy forgings are used in the fuel tanks of rocket and satellite propulsion engines, the shells of attitude control engines, the blades of liquid fuel turbo pumps and the inlet section of suction pumps. Most of these parts use low-interstitial element type Ti-5Al-2.5SnELI alloy with excellent low temperature toughness.
2) Turbine blades for power generation
Increasing the length of the blades of the steam turbine for thermal power generation is an effective measure to improve the power generation efficiency, but the lengthening of the blades will increase the load of the rotor. The use of titanium alloy forgings as blades can reduce the load, and the use of 1m long Ti-6Al-4V alloy blades in the final section of a high-speed rotating steam turbine has been put into practical use in 1991.
Grade 36 Titanium Bar     Gr9 Ti-3Al-2.5V Titanium Wire     titanium tube grade 9     Grade 12 Titanium Pipe

Friday, May 14, 2021

What are the characteristics of titanium rods?

We all know that the target material is the target material bombarded by high-speed energetic particles. Sputtering targets are mainly used in the electronics and information industries, such as integrated circuits, information storage, liquid crystal displays, laser storage, electronic control devices, etc.; it can also be used in the field of glass coating; it can also be used in wear-resistant materials, high temperature and corrosion resistance , High-end decorative products and other industries.
There are many types of target materials, including metals, alloys, oxides, etc., which are used in different industries and are widely used. So what are the common metal targets? Are sputtering targets lacking resources? Let's take a look together.
The types of common metal targets are as follows:
Conventional metal targets: Magnesium Mg, Manganese Mn, Iron Fe, Cobalt CO, Nickel Ni, Copper Cu, Zinc Zn, Lead Pd, Tin Sn, Aluminum AL
Small metal targets Indium In, Germanium Ge, Gallium Ga, Antimony Sb, Bismuth Bi, Cadmium Cd
Refractory metal targets Ti Ti, Zirconium Zr, Hafnium Hf, Vanadium V Niobium Nb, Tantalum Ta, Ming Cr, Molybdenum Mo, Tungsten W, Rhenium Re
Noble metal targets: Gold Au, silver Ag, palladium Pd, platinum Pt, iridium lr, ruthenium Ru, rhodium Rh, osmium Os
Semi-metal target carbon C, boron B, tellurium Te, selenium Se
Whether the sputtering target is a scarce resource
Rare metals usually refer to metals that are less in content or sparsely distributed in nature. They are difficult to extract from raw materials, and they are relatively late in industrial preparation and application. But it has a wide range of uses in modern industry. China is rich in rare metal resources. The proven reserves of tungsten, titanium, rare earths, vanadium, zirconium, tantalum, niobium, lithium, and beryllium are among the highest in the world. China is gradually establishing a rare metal industrial system.
Rare light metals include lithium Li, rubidium Rb, cesium Cs, and beryllium Be. The specific gravity is small and the chemical activity is strong.
Rare refractory metals include titanium, zirconium, hafnium, vanadium, niobium, tantalum, molybdenum, and tungsten. The melting point is higher, and the melting point of the compounds formed with carbon, nitrogen, silicon, boron, etc. is also higher.
Rare scattered metals are abbreviated as rare scattered metals, including gallium, indium, thallium, germanium, rhenium, selenium and tellurium. Most of it occurs in minerals of other elements.
Rare rare earth metals are abbreviated as rare earth metals, including scandium, yttrium and lanthanides. Their chemical properties are very similar and are associated with each other in minerals.
Rare radioactive metals include naturally occurring francium, radium, polonium and actinium, thorium, protactinium, and uranium in actinide series metals, as well as artificially manufactured technetium, promethium, actinium series other elements and elements 104 to 107.
The above classification is not very strict. Some rare metals can be included in this category or in another category. For example, rhenium can be included in the rare metals can also be included in the rare refractory metals.
However, it is not difficult to see from the above description that the metal components of sputtering targets for some special applications are indeed scarce resources.
Titanium Grade 2 Round Bar     Gr2 Pure Titanium Tube     Titanium Rotary Sputtering Target     titanium alloy sheet

Tuesday, May 11, 2021

In addition to high strength and good corrosion resistance, Gr5 titanium alloy has other characteristics.

In the chemical industry and other application fields, high requirements are placed on semi-finished products and processed parts of titanium or titanium alloys. Therefore, in the fields of aviation and aerospace, the cost of developing inspection instruments and monitoring devices is particularly high. The price of the parts has a big impact. Titanium alloy has the highest tensile plasticity and can be welded in various ways. It can be used for a long time at a temperature of up to 250 degrees Celsius. It is mainly used to manufacture various structural parts of aircraft and engines that are not stressed. Industrial pure titanium has good plasticity, can form various sheet metal stamping parts in a cold state, and has relatively high corrosion resistance. Ti5Al2.5Sn titanium alloy has a moderate room temperature tensile strength (800 degrees Celsius 1000MPa and good welding performance. Compared with industrial pure titanium, the new titanium alloy mainly includes various grades of industrial pure titanium and widely used Ti5Al2.5Sn For titanium alloys, the room temperature tensile strength of industrial pure titanium fluctuates in the range of 350 degrees Celsius and 700 MPa. Ti5Al2.5Sn alloy has slightly lower plasticity and higher thermal strength, and the long-term working temperature can be as high as 450 degrees Celsius.
With the rapid development of cutting-edge science and technology such as aviation, aerospace, nuclear energy, etc., the requirements for materials are becoming more and more stringent. Not only are the materials used for manufacturing these equipment parts to be corrosion-resistant, wear-resistant, and anti-fretting, but also require high-end resistance. temperature. It is necessary to pay attention to the long-term test, in many places, before the large-scale application of titanium to the chemical industry. Under the test conditions, cooperate to test its service life and material structure. If the lack of safety (immaturity) due to the use of conventional structural data is mostly indicated and the economic benefits are not great, then the first step is to gradually develop titanium and titanium alloys, as well as the development of high-level technology in the field of structural data in recent decades. Various other mature new materials. Therefore, the military sector has developed faster in the application field of titanium and its alloys than in the civilian field.
In many industrial media, rare earth metals and precious metals are often mainly used for stability, or materials such as stainless steel can only reach a certain limit in corrosion resistance. Most application fields use titanium to obtain benefits due to its low density, corrosion resistance, and high strength. So far. Moreover, the consumption cost is relatively high, so the application of titanium or titanium alloy can obtain relatively high corrosion resistance. The creep characteristics of hard titanium at temperatures exceeding 150T surpass that of aluminum and its alloys. Considering that compared with other materials, titanium alloys have the advantages of unique creep characteristics under low-density conditions. It is found that hard titanium is used in aircraft manufacturing and missile manufacturing. The importance of application. The earliest application of titanium and titanium alloys is the aviation industry. Recently, the aviation industry has become increasingly urgent for high-strength and low-density materials, which greatly promotes the development of titanium manufacturing.
Grade 7 Titanium Bar     Grade 23 Titanium Wire     titanium welded pipe     Grade 23 Titanium Pipe

Sunday, May 9, 2021

What are the advantages of titanium alloy board compared with other material sheets?

Titanium alloys are widely used because of their series of excellent properties. However, titanium alloys have high friction coefficients, are very sensitive to adhesive wear and fretting wear, have poor wear resistance, are easy to catch fire at high temperature and high-speed friction, and have relatively poor resistance to high-temperature oxidation. The shortcomings seriously affect the safety and reliability of its structure and greatly limit its application. Therefore, improving the surface properties of titanium alloys such as wear resistance, high-temperature oxidation resistance, and corrosion resistance is a problem that needs to be solved urgently. In addition to improving the alloy composition and preparation process, surface modification of titanium alloys is currently the most effective method.
In recent years, electron beam surface treatment technology has developed rapidly. When the electron beam with high energy density acts on the surface of the material, the surface of the material has physical, chemical, or mechanical properties that are difficult to achieve by conventional methods, and the wear resistance and corrosion resistance of the material surface is significantly improved. And high-temperature oxidation resistance. A domestic engineering technology company used pulsed high-current low-energy electron beams for surface treatment of titanium alloys and achieved good results.
The material used in the experiment is TA15 titanium alloy (Ti-6.5Al-2Zr-1Mo-1V). After the surface of the sample is polished, the surface is modified with a high-current pulsed electron beam. The electron beam acceleration voltage is 27kV, the target distance is 80mm, and the pulse The number of times is 10, and the pulse interval is 45s.
The hardness test of the obtained sample shows that as the depth increases, the hardness value first decreases and then increases, and finally tends to a fixed value. This special oscillating curve distribution can be explained as: under the pulsed high-energy rapid irradiation, a heating shock wave will sprout in the energy absorbing layer of the material, and it will be reflected back when it encounters the interface. Multiple irradiations cause interference and superposition of stress waves with each other, presenting a complex stress distribution state, and causing a special distribution of cross-section microhardness.
The wear volume of the sample after electron beam treatment is 3 times higher than that of the original sample, indicating that the wear resistance of TA15 titanium alloy after electron beam treatment is improved. The reasons may be the following three aspects:
(1) The high energy of the electron beam is instantly deposited in a small area of ​​the subsurface layer of the material, so that the material quickly rises to the phase transition temperature or the melting temperature, and then the heat conduction of the matrix achieves ultra-high-speed cooling (about 109K/s) to make the material surface The quenching effect occurs, which plays a role of solid solution strengthening, so the wear resistance of the surface is improved;
(2) The electron beam rapid solidification process will refine the grains of the surface layer of the material, thereby improving the wear resistance of the material;
(3) When the electron beam pulse acts on the surface of the material, the temperature begins to rise rapidly. As the rapid outward thermal expansion of the material surface is constrained, an inwardly propagating compressive thermal stress wave is generated. The residual stress forms a compressive stress distribution, which is beneficial to improve wear resistance.
Grade 36 Titanium Rod     Grade 12 Titanium Wire     titanium tubing for bike frame     Grade 1 Titanium Tube

Thursday, May 6, 2021

Titanium screw selection skills

The actual use value of titanium alloy plates: Titanium alloy plates have always been favored by people for their good physical properties, lightweight, beautiful appearance, durability, easy recycling of materials, high reuse rate, and no pollution. However, due to titanium The high price of alloy plates, poor wear resistance, and other factors directly affect the large-scale use of titanium alloy plates. Therefore, how to reduce the price of titanium alloy materials and improve the wear resistance of titanium alloys has become the development direction of titanium alloy materials in the future.
Titanium alloy has high strength, low density, corrosion resistance, long service life, and high waste recycling price. After being scrapped, the value of titanium scrap is still equivalent to more than 60% of the purchase value of raw materials. It can be said that titanium material is the least wasteful material, and the green environmental protection of titanium will not cause any adverse impact on the environment;
Titanium alloy is rich in resources and ranks third in the storage on the earth. It can be said to be inexhaustible and inexhaustible. Therefore, the high cost of titanium alloy plate is only the first time the investment is relatively large, but if you use it for many years, you can calculate it carefully. In the end, the titanium alloy plate is regarded as an economical and practical ideal material.
In order to improve the performance and grade of existing doors and windows in some domestic home furnishing industries, they have changed the low-level structure that only pursued labor-saving, material-saving, and low-price in the past, and realized the goal of shifting from sliding windows to better-performing casement windows. A transition from the main to realize diversified system designs such as single-layer, double-layer, three-layer, small opening, and large fixing. At the same time, attention should be paid to the selection of frame materials, glass, spacers, and sealants for titanium alloy doors.
Titanium alloy doors can use TC4 and titanium plates to make door edges, handles, spoke reinforcement rings, and ribs. Nowadays, some high-end villas have begun to use titanium alloy doors. After a long period of time, it has been proved that the use effect is very good, and the expected design goals have been fully achieved, adding beautiful scenery to people's lives and the environment.
Grade 7 Titanium Bar     Grade 23 Titanium Wire     titanium welded pipe     Grade 23 Titanium Pipe

Thursday, April 29, 2021

Hot working properties and industrial application of TC4 titanium alloy

Titanium and titanium alloy strip production is a process in which titanium and titanium alloy are processed into rectangular single sheets or coils through smelting, ingot casting, flat roll rolling, heat treatment and finishing processes.
The industrial production of titanium alloy strips in the world began in the early 1950s, and now it can produce strips with a roll weight of 4 to 5t and thick plates with a width of 4.2m. China started the production of titanium strips in the late 1950s, and built a larger titanium processing plant in the mid-1960s, forming a production system. The products have been serialized and can produce plates with a thickness of 0.3 to 30 mm and a thickness of 0.01. ~2.0mm strip.
Smelting and ingot casting Titanium has a high melting point and is chemically active. It is easy to interact with air and refractory materials at high temperatures or in a molten state. Titanium and titanium alloys are usually melted in a copper crucible cooled by water or liquid metal under a vacuum or inert gas atmosphere. At present, the most widely used in the production of titanium ingots is vacuum consumable electrode arc furnace smelting.
After mixing a certain proportion of sponge titanium, return material and alloy elements uniformly, they are pressed into a block (called electrode block) on a hydraulic press, and then the electrode block is welded into an electrode (rod) by a plasma welding method. In the electric arc furnace, it is remelted to form an ingot. In order to ensure the uniform composition of the ingot, the particle size of the added alloy elements, return material and sponge titanium are all controlled within a certain range, and vacuum remelting is adopted three times. Industrial-scale smelted titanium alloy ingots are generally 3-6t, and large-scale ingots reach 15t. Usually, the ingots melted by the vacuum consumable electrode arc furnace are round. In recent years, other methods, such as plasma smelting, electron beam smelting, shell smelting and electroslag smelting, have also been used to melt titanium alloy slabs and square ingots. For example, Japan uses a plasma beam furnace to smelt slabs weighing 3t, which are directly used for rolling strips.
Forging is the main method to break the as-cast crystal structure, improve material properties and obtain slabs of a certain size and shape. During the heating process before the slab forging, the titanium alloy easily reacts strongly with air to form an oxide scale and a getter layer, which reduces the plasticity and other properties of the material. Therefore, induction heating or heating in a room-shaped resistance furnace with good airtightness is often used. When using a flame furnace for heating, the furnace should be kept in a micro-oxidizing atmosphere, and a protective layer can also be coated on the surface of the ingot, or heated in an inert gas. Titanium alloys have low thermal conductivity. When heating large cross-sections or high-alloyed ingots, in order to prevent ingot cracking that may be caused by thermal stress, a low-temperature slow and high-temperature fast segmented heating method is usually used. Controlling the heating and final forging temperature of the ingot and the amount of forging deformation are important guarantees for obtaining high-quality titanium slabs.
machined titanium round rod     3 Inch Titanium Tube     titanium alloy powder     grade 7 titanium alloy sheet

Wednesday, April 28, 2021

Defect Analysis of Titanium Plate Titanium Strip Cold Rolling

Mainly used in the manufacture of various beams, bulkheads, slide rails, landing gear beams in aircraft structures, aero-engine fans, compressor plates, and blades. Replacing 30 CrMnSiA structural steel with TC4 titanium alloy can reduce the weight of parts by about 30%. In general, TC4 titanium alloy with standard composition is used. For aircraft structural parts requiring welding and high fracture toughness, high-purity TC4 titanium alloy with an oxygen content of not more than 0.15% is selected.
In the West, TC4 titanium alloy fasteners strengthened by solution aging treatment are widely used instead of steel fasteners to reduce the weight of aircraft structure, especially when titanium alloy or aluminum alloy is connected with carbon fiber composite materials, due to compatibility The consideration must choose titanium alloy fasteners. TC4 titanium alloy fasteners must be formed by the hot application method, which can easily meet the requirements for the organization and streamline. The fuselage bulkhead dies forging made of TC4 titanium alloy on the American F22 fighter has a projected area of ​​5.53m2. On the B1B supersonic bomber, the wing support through-beam structure made of TC4ELI titanium alloy is selected. It is designed according to the principle of damage tolerance and manufactured by superplastic forming and diffusion bonding methods. Its mass reaches 5400kg.
Hollow Titanium Bar     titanium pipe     Ultra-Thin Titanium Alloy Sheet     grade 5 titanium sheet

Monday, April 26, 2021

The difference between pure titanium screw and titanium alloy screw performance

1. Features
Titanium heat exchangers are not easy to lose metal ions, so they can make full use of this non-magnetic feature and be used as heat exchangers for pharmaceutical and food purposes. Due to the strong corrosion resistance of titanium, the heat exchanger has a long service life and low maintenance costs during use. In addition, because of its small size and large heat exchange capacity, the investment and operating costs of related equipment (such as pumps) can also be reduced accordingly.
2. Scope of application
Titanium heat exchangers rely on various excellent properties of industrial pure titanium and are widely used in all kinds of seafood breeding, seawater heat exchange, saltwater heat exchange, chemical industry, food, medicine, metallurgy, refrigeration, light industry, electroplating industry, aluminum oxidation tank, Industries and fields such as salt making, paper making, ultrasound, electronic communications, and central heating.

Thursday, April 22, 2021

Titanium rod / wire material storage requirements for the warehouse environment

At present, with the increasing demand for titanium and titanium alloy pipe fittings in the petroleum, chemical, textile and other industries, the use of seamed titanium pipe fittings has been equivalent to the use of seamless pipe fittings, while the domestic titanium and titanium alloy seamless and There is no applicable national standard for welded pipe fittings, so it is urgent to establish national standards to regulate the quality of titanium and titanium alloy seamless and welded pipe fittings. This standard is formulated on the basis of referring to the above-mentioned standards and accumulating on the basis of years of use and production experience.
1. The scope of application of titanium alloy pipe fittings is specified, and the size is consistent with ASME B16.9: 2007 "Forged Steel Butt Welded Pipe III Fittings Made in Factory" from DN15 to DN1200;
2. The relevant symbols of titanium alloy pipe fittings are specified, and they are consistent with the current standard symbols for steel pipe fittings;
3. The classification, common materials, dimensions and tolerances, manufacturing, surface quality and non-destructive testing of titanium alloy pipe fittings are stipulated; the category and code of titanium alloy pipe fittings are basically the same as those of ASME and steel pipe fittings national standards. The only difference is that there are seams. The pipe fitting code is to add the letter "W" before the seamless pipe fitting code, which is not used in the national steel pipe fitting standard, but it is stated in ASME SB-363; the marking example is consistent with the steel pipe national standard; According to HG/T 3651-1999 "Titanium Butt Welding Seamless Pipe Fittings" and the latest titanium material standards, the commonly used titanium grades and related standards are specified; the dimensions and tolerances of titanium alloy pipe fittings are based on ASME SB-363 "Seamless and Welded non-alloy titanium and titanium alloy welded pipe fittings" and ASME B16.9: 2007 "Factory-made forged steel butt-welded pipe fittings"; individual dimensions are slightly different from the national standards for steel pipe fittings, such as DN20 pipe fittings "Outer diameter at the mouth", GB/T 12459 is "26.9mm", and this standard is "26.7mm". According to HG/T 3651-1999 "Titanium Butt Welding Seamless Pipe Fittings", GB/T 12459 "Steel Butt Welding Seamless Pipe Fittings", GB/T 13401 "Steel Butt Welding Seamless Pipe Fittings", ASME SB-363 "Seamless "Unalloyed Titanium and Titanium Alloy Welded Pipe Fittings Welded and Welded" and the experience accumulated in the manufacturing and use conditions stipulate the requirements of titanium alloy pipe fittings manufacturing, surface quality and non-destructive testing.
4. According to GB/T 12459 "Steel Butt Welding Seamless Pipe Fittings", GB/T 13401 "Steel Butt Welding Pipe Fittings" and ASME B16.9: 2007 "Forged Steel Butt Welding Pipe Fittings Made in Factory", the design of titanium alloy pipe fittings The verification test (including its procedures, methods, availability of results, coverage and requirements), product tests and test methods are specified;
5. Provisions are made for the inspection and acceptance, batching, inspection items and determination of inspection results of titanium alloy pipe fittings;
6. The requirements for marking, packaging, transportation and storage of titanium alloy pipe fittings are specified;
7. It specifies the content that should be included in the contract or purchase order when ordering titanium alloy pipe fittings.
The biggest advantage of alloy pipe fittings is that they can be recycled 100%, in line with the national strategy of environmental protection, energy saving, and resource saving. The national policy encourages the expansion of the application areas of alloy pipe fittings. At present, the consumption of alloy pipe fittings in my country accounts for only half of the total amount of steel in developed countries. The expansion of the use of alloy pipe fittings provides a broader space for the development of the industry.
titanium alloy bar     Gr1 Pure Titanium Tube     TiN Sputtering Target     thin titanium plate

Tuesday, April 20, 2021

Surface treatment method for processing titanium and titanium alloy forgings

At present, the global automobile industry has formed a "six big plus three small" competition pattern, namely, GM, Ford, Daimler-Chrysler, Toyota, Volkswagen, Renault-Nissan and other six major automobile groups with an annual output of more than 4 million vehicles. Plus three relatively independent car companies, namely Citroen-Peugeot (PSV), Honda, and BMW. At present, the key enterprises in China's automobile industry are FAW, SAIC, Dongfeng, Changan and BAIC. There are more than 5,400 enterprises nationwide. In 2005, more than 5.7 million vehicles were produced and sold.
At present, reducing fuel consumption and reducing hazardous waste (CO2, NOx, etc.) emissions have become one of the main driving forces and directions for technological progress in the automotive industry. Research shows that lightweight is an effective measure to save fuel and reduce pollution. For every 10% reduction in the quality of a car, fuel consumption can be reduced by 8%-10%, and exhaust emissions can be reduced by 10%. For this reason, countries all over the world are studying the issue of automobile lightweight. The preferred way to reduce the weight of automobiles is to replace traditional automobile materials (such as steel) with high-strength lightweight materials (aluminum, magnesium, titanium, etc.).
1. Advantages and disadvantages of titanium for automobiles
The application of titanium rods and titanium forgings in automobiles began in the 1950s, when the titanium industry was just born. Due to technical and price reasons, the application of titanium in automobiles has not attracted the attention of the industry. With the improvement of automobile energy saving and environmental protection standards, it has gradually become a hot topic of common concern in the international materials and automobile circles in recent years.
Titanium rods and titanium forgings have a variety of excellent properties and are the preferred materials for many different types of auto parts. The main advantages and applications are as follows.
(1) The low density is only 60% of the steel density, which can not only reduce the mass of the whole vehicle, but also reduce the inertia of motion for high-speed moving parts.
(2) High specific strength Among various metal materials, the specific strength of titanium is almost the highest, which can be used as load-bearing parts;
(3) The modulus of elasticity is small, only 50% of steel, and the fatigue strength is large, suitable for springs;
(4) Good heat resistance, can work for a long time at 200-650℃, suitable for high temperature parts;
(5) The coefficient of thermal expansion is small, which is 50% of that of stainless steel and aluminum, suitable for parts such as engine valves;
(6) Good corrosion resistance. The corrosion resistance is better than aluminum, magnesium and stainless steel. It can resist corrosion from the atmosphere, rain, moisture on antifreeze roads and high-temperature exhaust gas containing hydrogen sulfide. It is suitable for exhaust nozzles and other parts with harsh operating conditions. ;
(7) Good frost resistance. In the environment of minus 100℃, low temperature brittleness will not occur;
(8) Good formability. Parts of various shapes can be manufactured through stamping, hot forging, powder metallurgy, precision casting, etc.;
(9) Good decorativeness Through oxidation treatment, various decorative materials with bright colors can be formed.
In addition to TC4 titanium alloy rods and TC4 titanium forgings for automobiles, titanium materials such as TiAl-based intermetallic compounds, reinforced titanium rods, and titanium forgings have higher heat resistance, rigidity and wear resistance.
The advantages of using titanium in automobiles are: reduce quality and reduce fuel consumption; improve power transmission effects and reduce noise; reduce vibration and reduce component load; improve vehicle durability and protect the environment.
The disadvantages are: under normal circumstances, the wear resistance of titanium used in automobiles is not good, the elasticity is lower than steel, and it is difficult to machine. However, the wear resistance can be improved by coating or strengthening, and the elasticity can be improved by reinforcement. If the machining adopts near-net forming technology or other processing conditions, the shortcomings can be minimized. What really hinders the wide application of titanium rods and titanium forgings is the cost of titanium rods and titanium forgings, which are determined by the complexity of titanium's raw materials, smelting, and processing techniques. The smelting cost is basically the energy cost necessary to separate titanium from oxygen, and the processing cost is usually the processing and polishing cost. Polishing includes a process of removing the cracks or surface damage caused by a large amount of oxygen.
titanium alloy rod     Gr1 Pure Titanium Pipe     Titanium Planar Target     thin titanium sheet

Monday, April 19, 2021

What are the advantages of Ti-6Al-4V titanium alloy as a surgical implant material?

Titanium alloys can be divided into structural titanium alloys, heat-resistant titanium alloys, corrosion-resistant alloys, low-temperature alloys, and special functional alloys (memory alloys, superconducting alloys, hydrogen storage alloys) and so on.
1. Structural titanium alloy
Low-strength titanium alloys are mainly used for corrosion-resistant titanium alloys. Other titanium alloys are used for structural parts called structural alloys. In practical applications, structural titanium alloys are divided into: normal-strength titanium alloys, medium-strength titanium alloys, and high-strength titanium alloys. alloy. Ordinary strength titanium alloy: Due to its good processing and formability and weldability, it is mostly used in the manufacture of various aviation sheet parts and civil products such as hydraulic pipes and bicycles. Medium-strength titanium alloy: The typical alloy is TC4, which is mostly used in high-tech industries such as aerospace and rocket launches. High-strength titanium alloy: generally used to replace the high-degree structural steel commonly used in aircraft structures.
2. Heat-resistant titanium alloy
Refers to a titanium alloy suitable for long-term work at higher temperatures. It has high instantaneous permanent strength in the entire working temperature range, good plasticity at room temperature, good creep resistance and good thermal stability, and fatigue resistance at room temperature and high temperature. It is mostly used in the manufacture of aircraft parts, disks, blades, air intake receivers and aircraft structural parts.
3. Corrosion-resistant titanium alloy
Refers to suitable for the application of titanium alloys in strong corrosive media. Corrosion-resistant titanium alloys are mainly low-strength alloys, such as titanium molybdenum, titanium target, titanium molybdenum target, titanium nickel, titanium tantalum and other alloys that are common in practice.
4. Low temperature titanium alloy
It refers to α and α-β titanium alloys suitable for use at low temperatures. The strength of this type of titanium alloy increases with the decrease of temperature, and the toughness rarely decreases with the decrease of temperature. It can be used as low-temperature structural parts. It has been widely used in shipbuilding, chemical industry, metallurgy, medical treatment, etc.
Grade 2 Titanium Round Bar     Gr12 Ti-0.3Mo-0.8Ni Titanium Sheet     Titanium Hex Nut     F2 Pure Titanium Forging

Thursday, April 15, 2021

Performance Advantages of Medical Titanium Alloy Materials and Analysis of Practical Application in Industry

Titanium alloy materials have good biocompatibility with the human body and good corrosion resistance in the human environment. Therefore, as an emerging material, it is used in the development and development of China's pharmaceutical industry, medical equipment, and human implants. It has only been used for nearly two decades, but it has achieved great success and has shortened the gap between China and the world's advanced countries.
①The low density of titanium makes medical parts lightweight and comfortable.
② Titanium has suitable strength and high fatigue strength, which can meet the strength requirements of bones, joints, surgical instruments, and rehabilitation equipment (such as wheelchairs).
③Titanium is resistant to corrosion (good chemical stability), and antibody liquid is corroded, suitable for use in various parts of the body.
④ Good biocompatibility, non-toxic (no inflammation, carcinogenic effects).
⑤Good mechanical compatibility, the elastic modulus of titanium alloy can be reduced to 50~100GPa, reducing stress shielding, and good matching with human bones.
⑥Low X-ray absorption rate, good X-ray visibility during a medical examination.
⑦The shape memory function can be used as orthopedic rods, bone nails, internal fixators, hip concentrators, internal stents, and other applications for the spine.
⑧Super elastic, suitable for orthopedic wire, suture needle, etc.
⑨With good processing and formability, it is suitable for making various products such as plates, rods, wires, tubes, capillaries, and special-shaped parts.
titanium round bar     Gr2 Pure Titanium Plate     Titanium Wing Nut     titanium alloy flange

Wednesday, April 14, 2021

Medical titanium alloy as a biomedical material for dental applications

In the 1980s, the research and application of titanium alloy pipes in the petroleum industry began in foreign countries. Chinese companies have also made certain progress in the development of titanium alloy tubing and casing, and the current products have been initially tested in wells. It is believed that in the near future, titanium alloy pipes will have more applications in the petroleum equipment industry, and new breakthroughs will be made in the world industry as soon as possible.
1), lower density
It can significantly reduce the string load, especially for ultra-deep oil well pipes.
2), higher strength
Including: tensile strength, creep strength, fatigue strength, etc.    the specific strength of different materials at different temperatures.
3), excellent corrosion resistance
Excellent seawater corrosion resistance
4) Wide operating temperature range
The operating temperature of conventional titanium alloy ranges from minus 269 ℃ to minus 600 ℃.
5), large elastic deformation capacity
Titanium alloy has high yield strength and low elastic modulus (E), so it is very suitable for springs and other parts, and more importantly, it is suitable for large-reach horizontal wells.
6), lower expansion coefficient
This feature makes petroleum equipment more adaptable to temperature changes and reduces the internal stress of structural parts.
7), non-magnetic
Meet the requirements of normal use of some detection, communication and control methods in various equipment.
8), better processing performance
Titanium alloy pipes usually have good process properties such as casting, forging, welding, 3D printing, etc., which are often an important factor in the selection process of various engineering materials.
titanium square rod     Gr5 Ti-6Al-4V Titanium Sheet     6al4v titanium sheet     titanium block