Thursday, August 25, 2022

Titanium tableware​Relevant domestic and foreign regulations on quality and safety

Regarding the quality and safety status of titanium alloy kitchen utensils, there are relevant regulations and standards at home and abroad.

1. Relevant domestic laws and regulations

In the early stage, the only metal products subject to domestic laws and regulations were stainless steel and aluminum. There is no domestic product standard or industry standard for Gr2 Pure Titanium Foil, and there is no monitoring data. After the introduction of the new national standard system for food contact materials, the metal materials and products for food contact are regulated according to GB 4806.9-2016 "National Food Safety Standard - Metal Materials and Products for Food Contact".

2. Relevant foreign laws and regulations

In foreign countries, the supervision of titanium alloy kitchen utensils is mainly included in the legal system of metal materials for food contact.

In the United States, the supervision of tableware, food processing equipment, and food and beverage dispensing equipment is mainly carried out in accordance with ANSI/NSF standards. In NSF/ANSI 51-2009 "Food Equipment Materials", the minimum public health and hygiene requirements are specified for the materials contacting food in the production and operation food equipment, and all "food area" materials are required to be free from intentionally added lead. , arsenic, cadmium, mercury composition.

According to the notice issued by the Ministry of Health, Labour and Welfare of Japan, the general requirements for metal materials for food containers and packaging are: when Ti 15V-3Cr-3Sn-3Al Titanium Strip design and manufacture utensils, copper, lead, or their alloys that can be scraped shall not be on the utensils.

At present, at the EU level, there is no legally binding special directive or regulation for metal materials and products in contact with food. The European Council "Partial Agreement in the Field of Social and Public Health" only published a technical guideline on metals and alloys in contact with food in 2002.

Sunday, August 7, 2022

Application Prospect of Titanium Alloy in Petroleum Industry

Titanium alloys are widely used in petroleum. In terms of current economic alternatives, there are mainly the following aspects.

At present, titanium alloy drill pipes of P110 steel grade have been produced in China. Compared with conventional ordinary steel S135 drill pipes, its advantages are as follows:

The large-reach well and horizontal well can be extended farther, and the density of titanium alloy is only 4.5g/cm3. The conventional density of drill pipe with the same wall thickness and length is 1.25g/cm3. The floating weight in the horizontal section of the drilling fluid is only 49% of that of the steel drill pipe. In this case, the frictional resistance is only about 50% of the ordinary drill pipe, and the friction torque of the pipe string is one of the core problems of the extended-reach well technology, which determines the maximum extension of the horizontal displacement, so the titanium alloy drill pipe It can be more beneficial to extended-reach wells and three-dimensional cluster horizontal wells. In the current situation of more and more factory drilling in China, titanium alloy drill pipe is used in a wider range.

Reduce ground equipment load

Due to the light weight of the titanium alloy forged ring the torque is reduced by nearly 50%, which effectively reduces the load of the ground top drive (turntable), which greatly reduces the probability of such damage, and the reduction of the load will also reduce the consumption of diesel.

Reduce hydraulic losses in joints

Titanium alloy drill pipe is light in weight and low in torque, and the processed drill pipe joint does not need to be strengthened like steel drill pipe. Usually, when φ127mm S135 drill pipe is used in horizontal wells, the inner diameter of the joint is reduced from φ82.55mm of G105 drill pipe to φ69. 85mm, titanium alloy drill pipe due to the reduction of torque, 80 steel grade drill pipe can achieve the strength effect of S135 steel grade at the same displacement (due to the 51% reduction in floating weight, the torque will also be reduced by 51%). The inner diameter of the drill pipe joint of X95 steel grade reaches φ88.9mm. The increase in the inner diameter of the joint can significantly reduce the cycle pressure loss.

Compared with the aluminum alloy drill pipe, the titanium alloy drill pipe has very prominent advantages. The performance of the titanium alloy and steel drill pipe joints is very similar, so the joint and the body can be made of the same material. In general, although the aluminum alloy drill pipe also has the characteristics of light weight, because the aluminum alloy is not resistant to wear and has low strength, the joint needs to be strengthened, and the joint is usually made of steel material, which results in a limited reduction in the weight of the drill pipe. Moreover, there is still a certain gap between the strength of aluminum alloy and high-strength steel, which can only reach about 2/3 of that of a complete set of titanium drill pipes. In addition, the material hardness of the aluminum alloy drill pipe is low, which causes serious scratches and wear on the body when the drill pipe collides with the well wall, so it is difficult to use. The titanium alloy drill pipe can effectively avoid this problem because the hardness of the body can be close to that of the steel drill pipe.

Wednesday, August 3, 2022

Titanium alloy parts processing occupies an important position in the machinery manufacturing industry

Titanium alloy has the advantages of low density, high specific strength, good corrosion resistance and good process performance, and is an ideal aerospace engineering structural material. Titanium and its alloys are replacing traditional aluminum alloys in many aerospace applications. Today, the aerospace industry consumes about 42% of total global production, and demand for titanium is expected to continue growing at a double-digit rate between now and 2010. The need for next-generation aircraft to take full advantage of the properties offered by titanium alloys is driving demand for titanium alloys in both the commercial and military aircraft markets. New models such as the Boeing 787, Airbus A380, F-22 Raptor, and F-35 Joint Strike Fighter (also known as Lightning II) use a lot of titanium alloys. Advantages of titanium alloy materials Titanium alloys have high strength, high fracture toughness, and good corrosion resistance and weldability. With the increasing use of composite structures in aircraft fuselage, the proportion of titanium-based materials used in the fuselage will also increase, because the combination of titanium and composite materials is far better than aluminum alloys. For example: Compared to aluminum alloys, titanium alloys can increase the life of airframe structures by 60%.

Because titanium alloys are more difficult to machine than ordinary alloy steels, titanium alloys are generally considered to be difficult-to-machine materials. The metal removal rate of a typical titanium alloy is only about 25% of that of most common steel or stainless steel, so machining a Titanium Grade 2 Round Rod workpiece takes about 4 times as long as machining a steel workpiece. To meet the growing demand for titanium machining in the aerospace industry, manufacturers need to increase production capacity and therefore need a better understanding of the effectiveness of titanium machining strategies. The machining of a typical titanium alloy workpiece starts with forging until 80% of the material is removed to obtain the final workpiece shape.

With the rapid growth of the aviation parts market, manufacturers have felt powerless, and the increased processing demand due to the low processing efficiency of titanium alloy workpieces has led to a significant tension in the processing capacity of titanium alloys. Some leading companies in the aerospace manufacturing industry even openly questioned whether the existing machining capabilities could complete the processing tasks of all new titanium alloy workpieces. Because these workpieces are often made from new alloys, machining methods and tool materials need to be changed. Titanium alloy Ti-6Al-4V titanium alloy has three different structural forms: a titanium alloy, a-b titanium alloy and b titanium alloy. Commercially pure titanium and a titanium alloys cannot be heat treated, but usually have good weldability; a-b titanium alloys can be heat treated, and most of them are also weldable; b and quasi-b titanium alloys can be fully heat treated, and generally also have Solderability.

The machining of titanium alloy parts occupies a very important position in the machinery manufacturing industry, and the machining of titanium alloy materials has always been a difficult point in the current processing technology. In order to meet the increasing demand for titanium alloy workpieces in aerospace, my country's titanium alloy cutting must make great progress. On the basis of domestic materials, machine tools and management conditions, it is important to further strengthen the optimization of the processing route of titanium alloy materials, the selection of processing parameters, and the improvement of processing efficiency and product quality, which are important to promote the development of the domestic titanium alloy industry and aerospace industry. factor. The inner cavity cylindrical surface finishing boring tool designed in this paper has a simple structure, is very convenient to manufacture and use, and solves the processing technology problem of the ball ring frame parts.