In the electronics industry, molybdenum sputtering targets are mainly used for flat panel displays, electrical and wiring materials for thin-film solar cells, and barrier materials for semiconductors. These are based on molybdenum's high melting point, high electrical conductivity, lower specific impedance, better corrosion resistance, and good environmental performance.
In the past, the wiring material for flat-panel displays was mainly chrome, but as flat-panel displays increase in size and precision, materials with lower specific impedance are increasingly required. In addition, environmental protection is also an issue that must be considered. Molybdenum has the advantage of only 1/2 of the specific impedance and film stress of chromium, and there is no environmental pollution problem, so it has become one of the Sputtering Target materials for flat panel displays. In addition, the use of molybdenum in LCD components can greatly improve the performance of LCDs in terms of brightness, contrast, color and life.
In the flat panel display industry, the main market application of molybdenum sputtering targets is the TFT-LCD field. Market research shows that the next few years will be the peak period of LCD development, with an annual growth rate of about 30%. With the development of LCD, the consumption of LCD sputtering targets has also increased rapidly, with an annual growth rate of about 20%. In 2006, the demand for spherical molybdenum sputtering targets was about 700t, and in 2007, it was about 900t.
In addition to the flat panel display industry, with the development of the new energy industry, the application of molybdenum sputtering targets in thin-film solar photovoltaic cells is also increasing. The molybdenum sputtering target is mainly used to form the electrical layer of the CIGS copper indium gallium selenide) thin-film battery by sputtering. Mo is located in the bottom layer of the solar cell, and as the back contact of the solar cell, it plays a very important role in the nucleation, growth and morphology of the CIGS thin-film crystals.
No comments:
Post a Comment