The ratio, properties, and morphology of basic phases α and β are very different in TC4 alloy under different heat treatment and hot working conditions. The β-transformation temperature of Gr5 Ti-6Al-4V Titanium Bar is around 1000 °C. If TC4 is heated to 950 °C, the obtained microstructure is a primary α+β-transformed structure after air cooling; called Weiss organization. If heating and deformation act at the same time, the effect is more obvious. The TC4 alloy is heated above the β-transition temperature, but the deformation is small, that is, the Widmandarin structure is formed. Its organizational characteristics are low plasticity and impact toughness, but good creep resistance. If the initial deformation temperature is above the β transformation, but the deformation degree is large enough, the obtained microstructure is characterized by: the β grain boundary delineated by the α phase is crushed, and the strip-shaped α phase is distorted, which is called a basket-like structure. Its characteristics are that the plasticity and impact toughness is better than Widmancers structure, similar to the equiaxed fine-grained structure, and the high-temperature durability and creep performance are better. If the heating temperature is lower than the β transition temperature and the deformation degree is sufficient, the equiaxed structure is obtained. It is characterized by good comprehensive properties, especially high plasticity, and impact toughness. If it is partially deformed at high temperature in the α+β phase region and then annealed at high temperature, the mixed microstructure will be obtained, and its comprehensive properties will be good.
Xi'an HST Metal Material Co., Ltd.is a high-tech innovative enterprise, mainly producing high-end non-ferrous metal materials, the main products involve titanium and titanium alloy Bar, wire, plate, pipe, flange and other titanium whole industry chain products with the standards of ASTM, ASME, AMS, DIN、NFL、COCT、TP、BSand other precious metal products, such asNickel, Zirconium, Tungsten, Molybdenum, Tantalum and so on.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment